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Number sense, a spontaneous ability to process approximate numbers,

has been documented in human adults, infants and newborns, and many

other animals. Species as distant as monkeys and crows exhibit very similar

neurons tuned to specific numerosities. How number sense can emerge in

the absence of learning or fine tuning is currently unknown. We introduce a

random-matrix theory of self-organized neural states where numbers are

coded by vectors of activation across multiple units, and where the vector

codes for successive integers are obtained through multiplication by a fixed

but random matrix. This cortical implementation of the ‘von Mises’ algorithm

explains many otherwise disconnected observations ranging from neural

tuning curves in monkeys to looking times in neonates and cortical numero-

topy in adults. The theory clarifies the origin of Weber–Fechner’s Law and

yields a novel and empirically validated prediction of multi-peak number

neurons. Random matrices constitute a novel mechanism for the emergence

of brain states coding for quantity.

This article is part of a discussion meeting issue ‘The origins of numerical

abilities’.
1. Introduction
What is the origin of our ability to represent numbers? The evidence is now over-

whelming for an approximate number system [1] shared between several species

and relying on number neurons distributed in parietal and prefrontal cortex (PFC)

[2]. Number neurons are cells whose firing varies systematically with the number

of objects or events, typically with coarse tuning around a cell-specific preferred

number, independently of low-level properties (e.g. size, spacing, intensity).

Yet their tuning properties are debated [3], and the precise circuit that allows

them to exhibit numerical tuning is still unknown.

An outstanding theoretical question about number sense concerns its pres-

ence in humans and other animals prior to learning. Number neurons have

been found in untrained animals [4] and numerical discrimination is present

in human neonates [5]. Such findings suggest that self-organizing properties

of neural circuits, early on during development, are responsible for the emer-

gence of number-coding neurons. Furthermore, the number sense possesses

very specific empirical properties, labelled here as D1–7, that any convincing

theory should confront: (D1) The number sense obeys Weber–Fechner’s Law:

our ability to discriminate between numbers varies as the log of their ratios [6].

(D2) Number neurons are tuned to a broad range of preferred numerosities up

to 30 items [7], including quantity zero [8–10], with log-Gaussian tuning

curves [7,11], and are found in monkeys even in the absence of numerical training

[4]. (D3) Neurons tuned to low and high numbers are more frequent than neurons

tuned to the middle of the tested range [7,11]. (D4) Monkeys trained to order

small numerosities spontaneously generalize to larger numerosities [12,13].

(D5) Neonates, hours after birth, can discriminate numbers that are in a suffi-

ciently large ratio [5]. (D6) In the course of development, number sense
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Figure 1. Theory of the spontaneous emergence of number sense in a random network: minimal model. (a) We consider a network of units regularly disposed on a
segment, where each unit’s activity represents the firing of a distinct neuron. (b,c1) The adjacency matrix associated with the network is Gaussian (Zij) and local (Tij):
the connection strength between two units is randomly drawn but scaled down exponentially as a function of their distance on the segment. (c2,d ) Successive
number states S0, S1, . . . , Sn are generated by the iterated application of the fixed adjacency matrix: starting from vector S0, the successor Skþ1 of each vector Sk is
obtained by multiplying it by matrix M, adding a small Gaussian noise, rectifying (operator [.]þ) and normalizing.
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becomes increasingly precise [14,15]. (D7) In human parietal

cortex, voxels selective for similar numbers are more likely to

be contiguous, forming a macroscopic cortical map (‘numero-

topy’ [16]).

Previous computational models based on number detec-

tor units have mostly focused on properties D1–3, but have

typically failed to address the broader issue of the emergence

of these properties without training. In order to obtain

operational number detectors, these models relied either on

fine-tuned hand-wired circuitry [17,18] or on learning

through exposure to many numerical sets [19,20]. An excep-

tion is Miller [21], which reported evidence for D1 and D2

in a randomly connected network of spiking neurons subject

to short-term plasticity. Indeed, random networks are known

to mimic the selectivity and sparsity of neural activations in

particular regimes [22].

Here, we present a random-matrix theory of number sense

that approaches numerosity at the level of vector states. We

reasoned that, if each number is represented by a vector of

activity across a large number of neurons, passing from one

number to the next could be achieved by matrix multiplication

(see [23] for a related approach in computational linguistics).

We here consider the simplest possibility, which is that this

successor matrix is random. We therefore envisaged that the

approximate number system could be built on the powers of

a certain type of random matrix: starting from some initial

vector, the vectors coding for successive numbers would be

generated by successive multiplications by the same fixed

matrix. This operation would constitute an analogue, within

the approximate number system, of the successor function

‘þ1’, a foundational concept of Peano arithmetic. We show

how all of the above properties D1–7 inevitably follow

from this simple theory. We implement the theory in two

different models with different degrees of biological realism,

which both possess very little initial structure and draw no

statistics at all from the environment. From a computational
neuroscience perspective, each model is a recurrent net-

work with a specific form of random but topographic

connectivity, thus causing an initially localized pattern of

activity to progressively radiate across neural space, and

thereby engendering a series of distributed vector codes for

successive numbers.
2. Results
(a) The minimal number sense model
We start by presenting the minimal implementation of the

theory: the minimal number sense model, illustrated in

figure 1. The model is entirely described by an n � n connec-

tivity matrix M, an initial activation vector S0 of dimension n
and discrete time dynamics for updating unit activations.

M represents a random pattern of connectivity between

number neurons which is stable for the timescale of an exper-

iment. Each entry Mij is a Gaussian random variable whose

amplitude drops exponentially with the distance between

units. The adjacency matrix of the minimal model is a well-

studied object in mathematics—a random band matrix

[24]—which has been used to describe spatially constrained

interactions in several physical systems (see [25] for an expo-

sition). In our case, such a random band matrix is intended to

capture both the sparsity of functional connectivity in the

nervous system and its exponential decrease with the dis-

tance between neocortical neurons [26]. S0 represents the

initial firing rates of number neurons in the absence of any

stimulus. S0 is localized: its non-zero components are clus-

tered together on the left side of the line (although even

this assumption can be relaxed: see electronic supplementary

material, Note S1).

Our abstract model does not process external stimuli.

Rather, what we strive for in this article is to introduce an algor-

ithm that produces a certain sequence of brain activity states

http://rstb.royalsocietypublishing.org/
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(Sk)k¼0. . .n appropriate to represent integers inasmuch as they

are discrete and linked by a successor operation, as defined

in Peano arithmetic, and to offer a close examination of the

properties of those neural states. Given any state Sk, the next

number state Skþ1 is obtained by multiplying Sk by M,

adding a small Gaussian random noise term 1, before rectifying

activations above zero and normalizing (figure 1d ). In this

manner, different numbers are assigned distinct vector

codes, while the successor function is implemented by matrix

multiplication. We remain agnostic as to the exact neural mech-

anism that triggers matrix multiplication, though a global

gating system acting on all number neurons would appear

mandatory. We note that in the cortex, rectification could be

the result of competition among neurons or of firing thresholds

at the cell level [27], while normalization has been described as

a canonical neural computation [28]. Critically, aside from the

noise and the rectification enforced onto the system, this set-up

is nothing else than the Power method, also known as ‘von

Mises iteration’ [29,30], a well-known algorithm that identifies

the eigenvector with largest eigenvalue of a matrix by iterative

matrix multiplication from an arbitrary vector state.

Figure 2 compares our simulation results with the electro-

physiological data on number neurons [7,11]. Although

we start with a simple clustered vector and update it with

a random matrix, units tuned to number spontaneously

emerge: simulations show that, for every number i, including

zero and up to 30, one can find units whose activity peaks at

iteration i (see electronic supplementary material, Note S2).

Furthermore, the average normalized activation of all model

units that prefer a given number i parallels the log-Gaussian

tuning curves reported in actual neuronal recordings [7]. On

a linear scale, tuning curves overlap and show increasing

skews, as reflected by increased responses to the numerosities

immediately next to the peak of the curve, as numerosity

increases. Once plotted on a log scale, however, tuning

curves become symmetrical and of similar width (D2). These

properties reflect the fact that under weak conditions on M
and S0, the von Mises iteration converges geometrically (see

electronic supplementary material, Note S9). Furthermore,

if units are binned according to their preferred number

(figure 2c), a U-shaped distribution emerges (D3), with more

units selective to the lowest and highest tested numerosities,

in agreement with the experimental data (figure 2d).

Next, we ask whether the model is capable of assigning dis-

tinct vector states to larger numbers. Without changing any

parameters, we produce 30 consecutive number states by suc-

cessive application of matrix M to the initial vector S0. We then

compare these theoretical vectors with the empirical vectors of

firing rates of PFC number neurons recorded in monkeys pre-

sented with numerosities 1–30 [7]. Figure 2e,f presents the

normalized activities of model units and of PFC neurons,

ordered by decreasing preferred number. In both cases, the

sigmoidal white crests of maximal unit responses confirm

the underlying U-shape distribution of number preferences

previously observed for numbers 1–5. The increasing band-

width of tuning curves is also reflected by the widening

yellow regions around the white crest as numerosity increases.

Interestingly, disconnected ‘islands’ of high activity appear in

some rows, suggesting that some neurons and units may be

sensitive to multiple numbers.

Figure 2g,h shows planar projections of number states in

the model and in the data, obtained by multi-dimensional

scaling. This procedure yields trajectories in state space, or
multi-dimensional ‘number lines’. We observe that number

lines in the data and in the model share three properties: they

are compressed, with a diminishing portion of the curve

devoted to increasing numbers; they are bounded, with each

trajectory converging slowly to an attractor state; and they

are sinuous, showing oscillations particularly for high num-

bers. Such oscillations are known to arise in the convergence

of the von Mises iteration when the two dominant eigenvalues

of the matrix are complex conjugates [31].

Figure 2e,f also shows that the Weber–Fechner Law scales

up to numbers 1–30: the discriminability of number states,

though higher in the model than in the data, is in each case to

a good approximation proportional to the log of the number

ratio (D1). Thus, our random-matrix algorithm captures the pre-

viously reported average and large-scale properties of the

number sense: the average unit represents a log-Gaussian

tuned number neuron, and discriminability is determined by

log ratio.

We now describe how this minimal model accounts for

additional behavioural data from adult monkeys, human

neonates and children of different ages.
To capture ordinal knowledge in trained monkeys [12],

we trained linear classifiers (Support Vector Machines, SVMs)

to identify the larger number among all 12 possible distinct

pairs of vector states between 1 and 4, and then tested them

on the 72 number pairs between 1 and 9, thus evaluating

their capacity to generalize to numbers outside of the original

training range (see electronic supplementary material, Note

S5). Figure 3a shows simulated accuracies averaged over all clas-

sifiers, for each possible number pair. Matching the empirically

observed performance of monkeys (figure 3b), the classifiers’

performance exhibits a distance effect and is above chance in

comparing pairs of numbers that both fall outside of the train-

ing range 1–4 (novel/novel pairs, property D4). It may seem

counterintuitive that an arbitrary vector, iteratively updated

by a random matrix, produces a non-random sequence of

states that contains generalizable information about numerical

order. However, the presence of a spontaneous order in

vector space arises naturally from the slow convergence of the

‘von Mises’ algorithm to the first eigenvector (i.e. with largest

eigenvalue) of matrix M, and is attested by multi-dimensional

scaling (figure 2g,h).

Infant recovery-from-adaptation paradigms [5] can be

simulated by training a one-class support vector machine

on noisy vector states obtained from different runs of the

same model for the same numerosity (see electronic sup-

plementary material, Note S6). When tested with a new

vector state that either matches or differs from the familiar

numerosity, emulating the procedure in [5], the classifier

rejects novel numerosities more than habitual ones, and this

effect reproduces infant looking times (figure 3c). Critically,

this response to numerical novelty is larger when the habitu-

ation and deviant numerosities differ by a 3 : 1 ratio than

when they differ by a 2 : 1 ratio, consistent with Weber’s

Law and in agreement with empirical data in neonates

(figure 3d, D1, D5).

Using the same logic, we simulated the improved number

discrimination that accompanies human development and edu-

cation (D6) [14,15] (see electronic supplementary material, Note

S7). According to our theory, vector representations for num-

bers are innate and stable. Why, then, does the behavioural

Weber fraction decrease with age and education? We attribute

this evolution to a progressive refinement in the way numerical

http://rstb.royalsocietypublishing.org/
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information is extracted from the neural population activity.

This postulate fits with direct electrophysiological evidence

that parietal number neurons are already present in untrained

monkeys, in proportions that remain unchanged by training,

and that only the proportion of prefrontal number neurons is

enhanced when monkeys are trained in a numerical match-to-

sample task [32]. We therefore simulated the development of

numerical comparison abilities as the training of a classifier to

decide which of two numbers is larger. When performance is

assessed early on during training, classifiers initially display

poor discrimination, with performance varying as a shallow

function of the log ratio of the numbers involved, mimicking

young children’s data. With additional training, discrimination
is increasingly better fitted by a steep sigmoidal, reflecting shar-

per number judgements and a shift in the apparent Weber

fraction (figure 3e,f, D6).

We note that, if the same population of neurons also

contained overlapping codes for non-numerical para-

meters such as physical size [33–35], our hypothesis that

development consists in a progressive focusing of decision-

making on the relevant numerical dimension could provide a

natural explanation for why children initially confuse number

with other physical dimensions (e.g. Piaget’s classical

‘number-conversation errors’), and why such non-numerical

interference decreases in the course of development [36]. We

did not explicitly simulate this aspect of our theory here,

http://rstb.royalsocietypublishing.org/
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however, because this would require additional assumption

about the coding of those non-numerical dimensions.
20170253
(b) The extended number sense model
The above model is deliberately abstract and lives in a space

of dimension 1. In a second implementation of our theory, we

aimed to study whether the same properties would hold in a

more realistic model of neuronal dynamics, including a net-

work of excitatory and inhibitory units embedded within a

cortical plane, with sparse and local connectivity (figure 4).

This extended model follows Dale’s principle [37]: units can

either be excitatory or inhibitory, but not both (see [38] for

a similar application of Dale’s principle to random networks).

As observed in the number system, excitatory units in the

extended model outnumber inhibitory units by 4 to 1 [2].

The absolute value for each entry Mij is still given by a Gaus-

sian random variable whose amplitude drops exponentially

with the distance between units. We also introduce a more rea-

listic sparsity constraint on all network connections. We now

show that this model retains all the properties of the minimal

model, and also accounts for several additional phenomena.

Figure 5 assesses the behaviour of the extended model on the

same properties as figure 2. It shows that number states in the

extended model continue to display the same properties as

those of number neurons. Specifically, the tuning curves overlap

and exhibit skews that increase with numerosity (D2, figure 5a),

more units are selective for the first and last number in the tested

range (D3, figure 5c,e), number states still appear to converge

exponentially to an attractor (figure 5g) and the Weber–

Fechner Law is conserved (D1, figure 5i). In addition, the

distinction that we now make between excitatory and inhibitory

units captures more detailed properties of number neurons.

Figure 5k shows that model responses are similar for nearby

pairs of excitatory units, but complementary for pairs of excit-

atory and inhibitory units (see electronic supplementary

material, Note S4). This interaction closely mirrors the empirical

relationship of tuning curves for adjacent number neurons in

the PFC (figure 5l), as reported for broad and narrow spiking

cells (corresponding to putative excitatory and inhibitory

cells) recorded from the same electrode [2,39]. This finding

suggests that even detailed properties of the micro-circuitry of

the approximate number system can be captured, in first

approximation, by our simple model.

Figure 6 likewise evaluates the extended model on the same

number sense properties as figure 3, and shows that it can still
account for properties D4 (figure 6a), D5 (figure 6c) and D6

(figure 6e). Importantly, our two-dimensional (2D) model

now enables the investigation of mesoscale aspects of the

number sense as detected by high-field imaging in human

adults. We thus ask whether the kind of spontaneous ordering

of number states shown by the model could account for the

emergence of ‘numerotopy’ [16], i.e. the similar location of

voxels selective for similar numerosities (D7). When the initial

vector S0 is clustered on the left side of the grid, the preferred

number diffuses locally from that initial cluster (figure 6e),

mirroring the medial-to-lateral gradient of selectivity observed

using functional magnetic resonance imaging in human

subjects (figure 6f). On average, the location of a unit along

the medial-to-lateral axis correlates with its number preference

(D7, rPearson¼ 0.95, pPearson� 0.001; excluding initial state

selective units: rPearson ¼ 0.86, pPearson� 0.001), as observed

experimentally (figure 6g,h). According to our model, however,

such a medial-to-lateral direction is not universal but contingent

upon the location of the units that are activated in the initial

state S0: different locations would produce different gradients,

depending on the diffusion opportunities offered by the

source. In fact, an initial vector S0, containing multiple ran-

domly placed clusters of units, results in multiple coexisting

gradients that run in opposite directions on different parts of

the simulated cortex, as is also manifest in the data [16]

(figure 6i,j). Similarly, our simulations show that the convexity

or concavity of the gradient is not universal, but depends on the

spread of the initial state cluster. Overall, the diffusion process

by which we explain numerotopy is not unrelated to the self-

organizing Turing reaction–diffusion model [40], although in

our case, the large-scale topography of number regions only

obtains after smoothing of the selectivity map by a Gaussian

filter. We thus predict that higher-resolution imaging should

uncover a more intertwined topography of number preferences

(see electronic supplementary material, Note S8). The fact that

voxel-level properties such as numerotopy can be accounted

for by exactly the same model as single-cell effects would also

suggest that the approximate number system is self-similar

across scales.
(c) Drawing quantitative predictions from the theory:
two critical tests

We now offer two quantitative predictions that set our theory

distinctly apart from other alternatives. First, our theory pre-

dicts that individual units can respond to more than one
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numerosity (figure 2e), suggesting that the log-normal model

more often captures an average firing rate profile over many

neurons with the same preferred numerosity. To test this pre-

diction and quantify the proportion of ‘multi-peak’ tuning

curves in real data, we conducted a post hoc analysis on all neur-

ons previously identified as number selective in the sample

period of [7] (see electronic supplementary material, Note

S3). Given a neuron with preferred numerosity n, the general

logic of this analysis was to grant another peak at numerosity

n0 whenever the firing rate of the cell did not differ significantly

in response to n and n0, but was significantly reduced for

numerosities between n and n0.
We discovered that 10.6% of number neurons exhibit

unambiguous tuning to multiple numbers, against 4.6% units

in the minimal model and 3.4% in the extended model (see

examples in figure 7). While the proportion of multi-peak neur-

ons is smaller in the model than in data, increasing the noise in

number states at each iteration increases the proportion of

multi-peak neurons in both our models. Importantly, units

with multiple number preferences are a generic behaviour of
our random-matrix theory: they appear even in the absence

of noise, as a counterpart at the unit level of the oscillatory be-

haviour previously reported at the population level. The

existence of multi-peak neurons is an original prediction of

our model, and the fact that actual number neurons conform

to this prediction thus provides strong support for the

random-matrix theory.

Our second quantitative prediction concerns the funda-

mental assumption of our theory, that of a random band

matrix which implements a successor function. Because this

matrix links number codes together, it is legitimate to ask

whether its dimension n and bandwidth w would impact on

number sense. In fact, a long-standing conjecture [41] in

random-matrix theory states that for random band matrices

whose underlying space is of dimension 1, a critical bandwidth

w* exists that marks a sharp phase transition between two

regimes: a strongly disordered, ‘insulator’ regime for bands

smaller than
ffiffiffi
n
p

, where eigenvectors are localized in the

sense that most of the norm of the vector is carried by a few

elements, and a weakly disordered, ‘metallic’ regime for

http://rstb.royalsocietypublishing.org/
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p
(r2 ¼ 0.5), which arises from the most applicable conjecture for a phase

transition in 2D random band matrices [42]. Weber – Fechner scores, whose maximal values are close to ceiling in both models, were computed as described in the
electronic supplementary material.
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bands larger than
ffiffiffi
n
p

, where eigenvectors are delocalized

(i.e. more distributed). Though there is no exact counterpart

of this conjecture for the more biologically motivated matrix

used in the extended model, some results for dimension 2

random band matrices point to a critical bandwidth that

would scale like
ffiffiffiffiffiffiffiffiffiffiffiffiffi
log(nÞ

p
[42]. We therefore examined whether

the models changed behaviour when w approaches the critical

bandwidth.

Figure 8 shows how Weber–Fechner scores vary as a func-

tion of n and w in the minimal and extended models. Both

models exhibit a smooth landscape of Weber–Fechner scores.

In the minimal model, global maxima (white crosses) are situ-

ated strikingly close to the conjectured critical bandwidths of

w� ¼
ffiffiffi
n
p

, (figure 8a, dotted curve). In other words, whatever

the dimension of the minimal model, the critical bandwidth

conjectured in random-matrix theory is also precisely where

Weber–Fechner’s Law holds with the greatest precision. In

the extended model, there is a sharp transition from high to

low scores after a critical bandwidth that also scales approxi-

mately like the square root of n. Note that in the extended

model, the precise shape of the relation between critical w
and n depends exquisitely on the structure of the initial state

(see electronic supplementary material, Note S11), though a

common feature is that of critical bandwidths increasing mono-

tonically with n. Thus, in our theory, the Weber–Fechner Law

appears to be linked to conjectures on phase transitions in

random band matrices.

This prediction sets our theory distinctly apart from those

which hold that number representations do not exist in the

abstract, but are transient constructs computed from combi-

nations of low-level stimulus properties (e.g. in the case of

visual dot displays, total surface area or density [18]): according

to these views, one would not expect any simple relation to hold

between the composite representations obtained for all con-

secutive numbers, let alone any link to criticality phenomena

in random band matrices. Testing this prediction would require

estimation of the properties of matrix M, for instance, by com-

puting the cross-correlation matrix between a significant

fraction of number neurons as a function of their cortical dis-

tance, for different subjects, trials and numbers. High-density
2D arrays of multi-electrodes could be sufficient for the task,

as they are known to provide sufficient resolution to distinguish

between inhibitory and excitatory cells [26], which would be

necessary to test the predictions of the extended model.
3. Discussion
We have shown how a simple theory, based on random

matrices, reproduces several important aspects of number

sense, including some for which learning cannot be assumed.

The theory conserves its explanatory power across a range of

parameters and implementation choices (see electronic sup-

plementary material, Note S10), but its key ingredients lie in

the assumptions that (i) each number is coded by a sparse,

rectified and normalized vector; and (ii) the vectors for

consecutive numbers are iteratively linked through multipli-

cation by a fixed random band matrix M. Number states in

our theory are therefore originally sequential: activating Sn

requires running through all the sequence of number states

from 0 to n. Not only does this theory provide a better account

of number neurons than our previous log-Gaussian approach,

particularly in predicting and accounting for the new discovery

of multi-peak number neurons, but it also endows number

codes with a ‘matrix’ successor function (þ1 is implemented

by one application of M). In the present view, distinct numbers

are not simply indexed by distinct populations of number

neurons, but these neurons actually reflect a vector-based

system of interrelated symbols linked by a fixed successor

operation [43]. Indeed, other basic arithmetic operations such

asþ2 or 21 could be implemented by simple matrix operations

(M2, M21). Our theory therefore offers a first glimpse of how

uneducated adults, monkeys and even young infants, without

training, could be endowed with a sensitivity for non-symbolic

arithmetic and its violations [44–46].

(a) Numerosity zero and the initial state
Our theory builds on an initial activation pattern, S0, whose

successors represent the numerosities one, two, etc. A straight-

forward interpretation of S0 is therefore that it represents
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numerosity zero. As previously noted, zero-selective units

are consistent with several electrophysiological studies that

have reported cells tuned to numerosity zero (i.e. the absence

of objects) in the monkey brain ([9–11], for review, see [47]).

In these reports, as in our theory, numerosity zero appears to

be seamlessly integrated into the approximate number

system, for instance, allowing monkeys and young children

to infer that zero (absence of objects) is a smaller numerosity

than any other set size [48,49]. However, the present model

does not fully cover all of the stages of the cultural emergence

of a concept of zero [47], which at the highest level involves

assigning zero a precise symbolic role in the system of arith-

metic (place-holder in Arabic notation, neutral element for

addition, etc.).

(b) The successor function
Our neural implementation of an analogue of Peano’s succes-

sor function, a fundamental requisite of arithmetic, should

not be confused with the successor function familiar to devel-

opmental psychologists, i.e. the laborious acquisition, during

childhood, of a system of exact number symbols 1, 2, 3 . . .

linked through counting. While our model accounts for

how human and non-human primates, as well as other

species, can be innately endowed with approximate number

vectors, much remains to be understood about how these vec-

tors are linked, on the perceptual side, to sets of objects, and

on the abstract side, to symbols such as Arabic numerals or

verbal number words. In fact, because the number states in

our theory have exponentially vanishing distances, it is

doubtful that exactly the same mechanism could be recycled

for exact numbers, where the distance between consecutive

numbers would presumably need to remain constant.

(c) Levels of description
Although our theory for the origins of number vectors includes

realistic properties such as Dale’s principle, sparsity of neural

activity patterns and sparse and distance-dependent connec-

tivity, it describes brain activity at an abstract mathematical

level similar in spirit to the classical Hopfield model for

neural networks [50]. This abstract nature need not be a disad-

vantage, for it also allows knowledge acquired in the

mathematical field of random matrices to shed light onto the

neuroscience of number. Specifically, our simulations suggest

that the Weber–Fechner Law for numbers arises from an

eigenvector algorithm that runs on a population of neurons

with random synaptic strengths, and a propensity to connect

with neighbours that is set at criticality (figure 8; electronic

supplementary material, Note S11).

Among the many steps that one might take towards more

realistic models, using spiking units and differentiating the

firing rate levels and connectivity ranges for excitatory and

inhibitory units would no doubt help capture the micro-circui-

try of number neurons. Most importantly, the present proposal

leaves unspecified the nature of the gating mechanism that

would implement the required step-like application of matrix

M each time one moves from numerosity i to i þ 1. This

assumption sets our theory apart from otherwise similar

proposals of ‘liquid computing’ or ‘echo-state networks’

where an internal vector representation is allowed to evolve

continuously under the continuous application of a fixed

and possibly random dynamics [51–53], and which capture

several aspects of the neural representation of time [54].
(d) Sequentiality and subitizing
One challenge facing our theory is to reconcile its inherent

sequentiality with the absence of observed delays in neural

firing patterns for different numerosities [4,11]. By analogy

with the dynamic waves of spontaneous retinal activity that ulti-

mately generate static retinotopic visual maps [55], we suggest

that the postulated matrix iterations may occur dynamically

during gestation, shaping number sense by generating ordered

vector states that are only later being associated in parallel

with external stimuli. Given the noise present at each iteration

as well as the exponential nature of our theory, vectors for

small numerosities are inherently more stable and more distant

from each other: the resulting parallel associations for small

numbers could thus possibly explain subitizing, one of the few

number sense phenomena not addressed in this article. A

more detailed description of the way such parallel associations

are built would require specifying how our abstract models

interact with the computational machinery that processes

actual stimuli in the visual and auditory pathways. While the

organization of such perceptual processing has been the main

focus of previous theoretical models of number sense [17–20],

the main virtue of the present theory is to address the problem

from the opposite direction: we demonstrate how structured

neural codes for number can emerge from sheer randomness

through an endogenous mechanism that is minimal enough

to be specified genetically. Such a spontaneous emergence,

without training or specific sensory interactions, fits with the

presence of number neurons in untrained animals [3,4], of pari-

etal-lobe responses to number in human infants [56] and

of normal parietal brain networks for number sense even in

congenitally blind subjects [57].

(e) Criticality and the number sense
One might wonder why, in the minimal model, the random

band matrix that exhibits the most canonical number sense

has a bandwidth set at criticality. We speculate that there

may be an advantage in using the smallest possible bandwidth

that still results in distributed eigenvectors. Small bandwidths

mean fewer synapses to maintain, while distributed eigenvec-

tors imply more distributed number states, which may, for

instance, improve generalization performance for learning sys-

tems lying downstream. These two opposite pressures could

conspire to bring the system near criticality.

( f ) Predictions
Our theory makes several novel predictions. The first, which we

verified here for the first time, to our knowledge, through a rea-

nalysis of existing data, is that individual number neurons can

exhibit multiple peaks of numerosity preference (figure 7). It

mirrors the recent finding of multi-peak time-coding cells in

the hippocampus [58], and lends support to the notion that simi-

lar iterative processes could be at work in the cognition of time

and space [54]. A second prediction is that the cross-correlogram

between number neurons should be stable across numbers, and

in normal subjects should assume the form of a random band

matrix with bandwidth w set close to criticality, and away

from criticality in subjects with an impaired number sense

(figure 8). Third, numerotopy should only be an average prop-

erty, and imaging with higher fields should reveal distributed

number tuning in parietal neurons, as well as complex multi-

peak neurons. Fourth, number neurons and numerotopy
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Table 1. Parameters of the minimal model.

parameters values description default

n N dimension of vector state 900

a Rþ locality of adjacency

matrix

30

a1 [0, 1] amplitude of Gaussian

noise in vector state

0.01

r0 [0, 1] proportion of initially

active leftmost units

0.1

Table 2. Parameters of the extended model.

parameters values description default

n N dimension of vector state 30 � 30

r [0, 1] probability of non-zero

entry in adjacency matrix

0.33

p [0, 1] probability of inhibitory

unit

0.20

a Rþ locality of adjacency matrix 750

a1 [0, 1] amplitude of Gaussian

noise in vector state

0.01

r0 [0, 1] allowed domain of

variation on x-axis for

initial state clusters

0.1
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should already be present in the newborn brain. Given the pres-

ence of number sense in many species, our theory hints that the

nervous system may have been harnessing the properties of

random matrices as a self-organizing representational system

for millions of years.
70253
4. Methods
Our random-matrix theory of the number sense relies on an

iterative process that constructs a sequence of number states of

dimension n, using an (n � n) random band matrix M as a

successor function, and a clustered initial state.

(a) The minimal model
In the minimal model, each unit i ¼ 1, . . . , n is disposed regularly

on a line, and the distance between two units is defined as their

absolute distance. Matrix M constitutes the adjacency matrix of

the network defined on this line: each entry Mij is a Gaussian

random variable, rescaled so as to decrease exponentially with

the distance between units i and j:

Mij ¼ Zij Tij , ð4:1Þ

where

Zij N ð0, 1Þ
and Tij ¼ e�aðjxi� xj j=nÞ:

The minimal model has very little structure: in the absence of

locality (a ¼ 0), we recover a standard Gaussian matrix.

Starting from a deliberately simple initial state S0, in which

activation is confined to the leftmost part of the line, each new

state is obtained by multiplying the current one by M, adding

a small standard Gaussian noise 1 with amplitude a1, rectifying,

and normalizing:

Skþ1 ¼
[MSk þ 1]þ
k[MSk þ 1]þk

, ð4:2Þ

Where [:]þ stands for rectification above zero.

Hence, the minimal model has three main parameters: n, a,

a1. In addition, the initial state requires another parameter r0:

before normalizing, all units in the initial state are set to 0,

except for the leftmost r0 n units which are set to 1. Table 1

gives an exhaustive list of parameters in the minimal model.

(b) The extended model
In the extended model, each unit i ¼ 1, . . . , n is embedded in affiffiffi

n
p
�

ffiffiffi
n
p

square grid, with integral coordinates (xi, yi) given

by xi ¼ i Div(
ffiffiffi
n
p
Þ and yi ¼ i Mod(

ffiffiffi
n
p
Þ. The distance between

two units is defined as the L2 norm. The matrix M now constitu-

tes the adjacency matrix of the network defined on this grid.
Each entry Mij is a half-normal random variable, rescaled so as

to decrease exponentially with the distance between units i and

j, and multiplied by a Bernoulli variable:

Mij ¼ Zij Tij Bij, ð4:3Þ

where

Zij N (0, 1)j ,

Tij ¼
e�a

kxi� xjk
n if i is excitatory

�ð1� pÞ
p

e�a
kxi� xjk

n if i is inhibitory,

8><
>:

and Bij B(r):

Parameter p controls the proportion of inhibitory units, while

parameters r and a, respectively, control the density and locality

of the system. Notice that inhibitory weights are rescaled so as to

ensure that the adjacency matrix always has mean 0, despite the

imbalance between excitatory and inhibitory connections (when

p=0.5). The dynamics of the extended model are unchanged,

and new model states are still iteratively obtained by application

of equation (4.2).

The initial state in the extended model is still clustered and

stable across trials, but the activation pattern on initially active

units is now modelled as a Gaussian 2D bump of activation

whose centre varies uniformly across subjects between [0, nr0]

on the x-axis, and [0, n] on the y-axis. The extended model therefore

has six parameters in total: n, p, r, a, a1 and r0, listed in table 2.

(c) General simulation procedure
In all of our simulations, we distinguish between different sub-

jects (captured by model runs with different initializations of

the random matrix M and different initial states), different

trials (model runs with the same matrix and same initial state)

and numerosities (model runs with the same M and the same

initial state, for a number of iterations). The exact numbers of

subjects, trials and numerosities are adapted to the experiment

under simulation. Unless otherwise specified, all simulations

were run with the default values given in tables 1 and 2.

(d) Code availability
The full python code used in the simulations is available upon

request to the first author, and will be made publicly available

on the Unicog website (http://www.unicog.org/biblio/) after

publication of the article.

http://www.unicog.org/biblio/
http://www.unicog.org/biblio/
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